### Electrification of the Freight System in Minnesota: Barriers, Opportunities, and a Multicriteria Planning Tool

#### Alireza Khani, PhD, PE

Associate Professor Department of Civil, Environmental, and Geo- Engineering University of Minnesota Twin Cities

CTS Council Meeting and Webinar, University of Minnesota, Minneapolis MN, April 19, 2022



## **PRESENTATION OVERVIEW**

Part 1: Barriers and Opportunities in Adoption of Electric Trucks

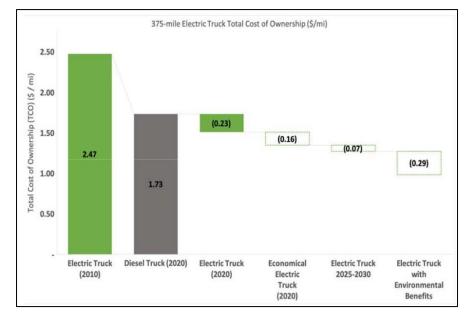
Part 2: A Multi-criteria Decision Analysis Tool for Charging Station Locations Planning

### Part 1 Barriers and Opportunities in Adoption of Electric Trucks



## BARRIERS TO ELECTRIC TRUCKS ADOPTION

- 1. Technical Performance
  - Infrastructure
  - Driving Range
  - Charging Time
  - Battery Cost and Life Cycle
- 2. Operational Performance
  - Charging Pattern (overnight vs. en route)
  - Loading Capacity
  - Repair Facilities and Technicians


- 3. Economics Barriers
  - Initial purchase cost
  - Battery replacement cost
  - Independent operators and small businesses may not afford it
- 4. Utility Perspective
  - Grid Capacity
  - Upgrading Cost
  - Business Model Uncertainty



### ELECTRIC TRUCKS' BENEFITS AND OPPORTUNITIES

#### 1. Economic Benefits

- At current battery price (\$135/kWh), class 8 operating 300 miles/day:
  - 13% lower ownership cost than diesel trucks (\$1.51 vs \$1.73 per mile)
    - →Initial cost payback in 3.2 years
    - →\$200,000 saving in 15 years
- At 2030 battery price (\$60/hWh):
  - 40% lower ownership cost



Why regional and long-haul trucks are primed for electrification now. Lawrence Berkeley National Lab.(LBNL), 2021.



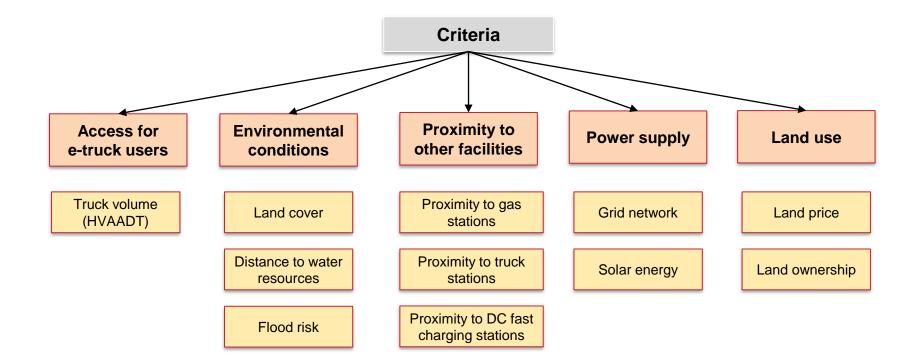
### ELECTRIC TRUCKS' BENEFITS AND OPPORTUNITIES (CONT.)

#### 2. Environmental Benefits

- GHG reduction is another \$0.29 saving per mile
- Lower GHG emissions improves the health and livability of communities
- 3. Operational Benefits
  - Energy regeneration and better maneuverability in traffic congestion
  - Taking more direct routes through urban areas (better routing, time/mileage saving)
  - Potential operation in low-emission zones in urban areas
  - Extended operation time window in urban areas due to less noise
- 4. Opportunities for Policies and Incentives
  - Financial support: purchase cost incentives, energy incentives
  - Promotional policies: routing, low-emission zoning, extended operation time windows



## Part 2 A Multi-criteria Decision Analysis Tool For Charging Station Locations Planning






- Identify the corridors of Minnesota highway network where public charging stations are most needed
- Optimize the location and type of e-truck charging stations on Minnesota highway network

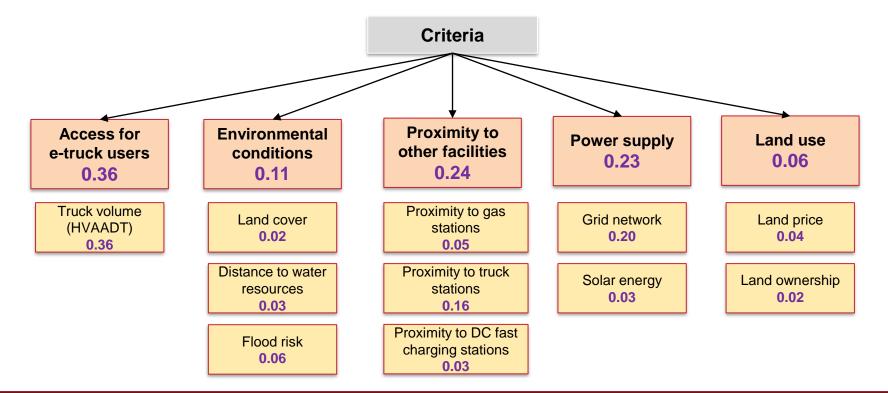


# CRITERIA STRUCTURE





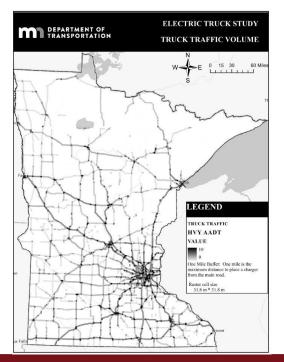
# EXPERT SURVEY


- Objective: to estimate criteria weights based on expert knowledge
- Method: pairwise comparison of the criteria
- Recipients: experts and stakeholder (MnDOT, ATRI, FMRI, ATA, HDR, etc.)
- Responses:16 responses with 11 meeting the consistency conditions

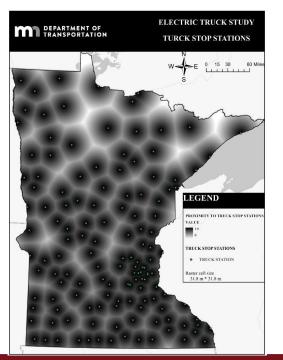


|                                                                             | 9 |   |   |   | 5 | 4 | 3 | 2 | 1 | 1/2 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 | 1/8 | 1/9 |
|-----------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|
| "Accessibility" is times important than "proximity"                         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| "Accessibility" is times important than<br>"Environmental conditions"       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| " <u>Accessibility</u> " is times important than<br>" <u>Power supply</u> " | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| " <u>Accessibility</u> " is times important than<br>" <u>Land Use</u> "     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

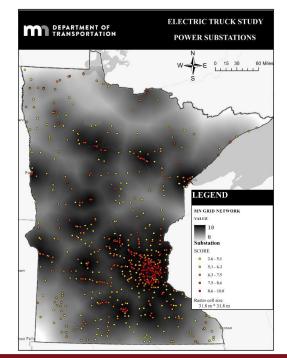



## CRITERIA WEIGHTS (SURVEY RESULTS)






# GIS ANALYSIS OF THE CRITERIA (SAMPLE)


#### Truck Traffic Volume



#### **Truck Stations**



#### **Power Substations**



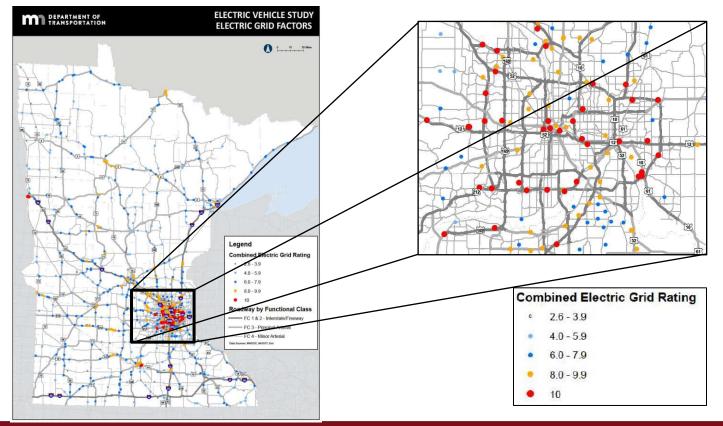


# POWER SUPPLY ANALYSIS

#### Proximity to electrical substations (50%)

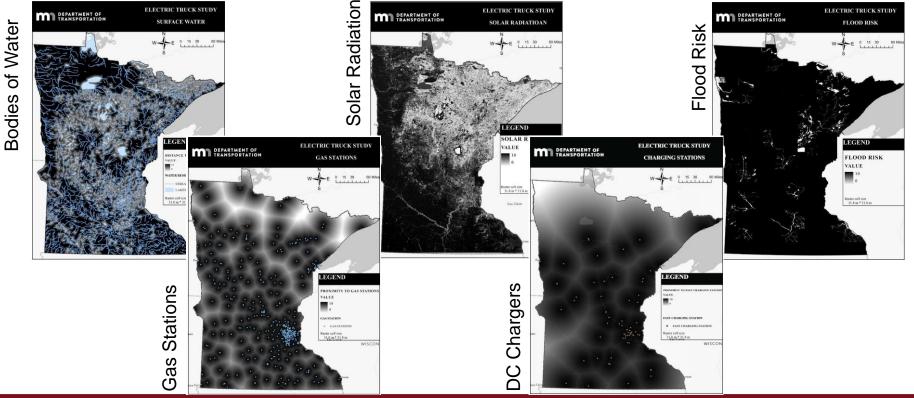
| Proximity to<br>electrical<br>substations | < 0.5 miles to Interstate/Freeway<br>(Functional Class 1 & 2)                                               | 10 |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
|                                           | 0.5 - 1 mile to Interstate/Freeway<br>(Functional Class 1 & 2)                                              |    |  |  |  |  |
|                                           | < 0.5 miles to Remaining US<br>Highways/Trunk Highways (not an<br>interstate/freeway) (Functional Class 3)  |    |  |  |  |  |
|                                           | 0.5 - 1 mile to Remaining US<br>Highways/Trunk Highways (not an<br>interstate/freeway) (Functional Class 3) | 7  |  |  |  |  |
|                                           | < 0.5 miles to Other Principal Arterial<br>(Functional Class 4)                                             | 4  |  |  |  |  |
|                                           | 0.5 - 1 mile to Other Principal Arterials<br>(Functional Class 4)                                           | 3  |  |  |  |  |

#### Capacity of electrical substations (30%)


| Power<br>capacity of<br>electrical<br>substations | Lowest Voltage 115kV<br>(20+ MW Power Capacity) | 10 |
|---------------------------------------------------|-------------------------------------------------|----|
|                                                   | Lowest Voltage 69kV<br>(10+ MW Power Capacity)  | 7  |

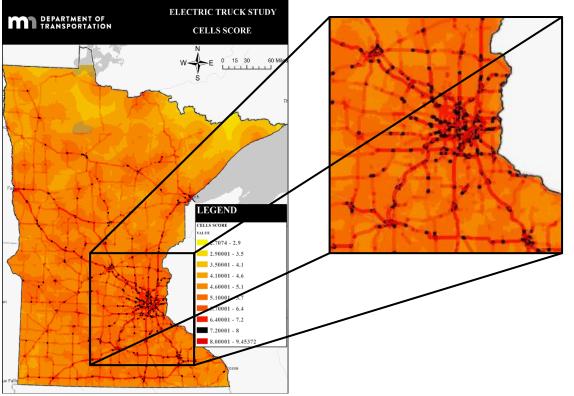
#### Power reliability (20%)

|                     | 3+ substations within a 5-mile buffer | 10 |
|---------------------|---------------------------------------|----|
| Power<br>reliabilty | 2 substations within a 5-mile buffer  | 7  |
|                     | 1 substation within a 5-mile buffer   | 3  |
|                     | 0 substations within a 5-mile buffer  | 1  |




## POWER SUPPLY ANALYSIS (CONT.)






## GIS ANALYSIS OF THE CRITERIA (CONT.)



# MULTICRITERIA DECISION ANALYSIS

- The state was divided to pixels of ¼ acre
- 2. A 0-10 score was calculated for each pixel based on:
  - GIS analysis of the criteria
  - Criteria weights
- Pixels with score >8 are identified as *candidate* locations for charging station



# TOP CORRIDORS FOR ELECTRIFICATION

- I-35 from Albert Lea to Duluth
- I-94 from Lakeland to Fargo
- I-90 from La Crosse to Luverne
- US 10 form Cottage Grove to Moorhead
- US 169 from Elmore to Grand Rapids



# NEXT STEPS

- The identified locations are *candidate* locations only
- Further analysis is needed to:
  - Remove/merge duplicates
  - Fill gaps in major freight corridors
- An optimization model will be developed considering:
  - Truck origin-destination trips
  - Charging capacity and cost
  - Budget and other constraints



# CONCLUSIONS

- Adoption of electric trucks will not be easy at the beginning, proper government policies and incentives are needed
- Among several barriers, we study the planning and optimization of charging stations
- Our approach is general and can be applied to other locations and/or with different sets of criteria



#### **Contact**

Alireza Khani, PhD, PE University of Minnesota <u>akhani@umn.edu</u>



#### **Acknowledgements**







